A NOVEL 2-BUTYLAMINATION OF 1,4-DIHYDROXYANTHRAQUINONE PROMOTED BY METAL IONS

Masaru MATSUOKA * , Yoshinobu MAKINO * , Katsuhira YOSHIDA ** , and Teijiro KITAO *

- * Department of Applied Chemistry, College of Engineering, University of Osaka Prefecture, Sakai, Osaka 591
- ** Department of Chemistry, Faculty of Science, Kochi University, Akatsuki, Kochi 780

In the presence of cuprous or cupric chloride, 2-butylamino-1,4-dihydroxyanthraquinone was synthesized quantitatively from 1,4-dihydroxyanthraquinone and butylamine at ambient temperature.

In our previous paper $^{1,2)}$, we reported a new metal-promoted amination between α -substituted anthraquinones and alkylamines. In the reaction, l-amino-4-butylaminoanthraquinone was conveniently synthesized from l-aminoanthraquinone and butylamine in the presence of various metal salts in a good yield under the mild conditions. In this communication, we examine the reaction between 1,4-dihydroxyanthraquinone $\underline{1}$ and butylamine in the presence of various metal salts (Scheme 1).

$$[A] \xrightarrow{Br_2} \xrightarrow{O} OH \xrightarrow{Br} RNH_2 / Copper Salts$$

$$[A] \xrightarrow{Br_2} \xrightarrow{O} OH \xrightarrow{O} OH \xrightarrow{NHR} 2 / Metal Salts$$

$$[B] \xrightarrow{RNH_2} \xrightarrow{O} OH \xrightarrow{RNH_2} OH \xrightarrow{O} OH \xrightarrow{NHR} OH \xrightarrow{O} OH \xrightarrow{NHR} OH \xrightarrow{Scheme 1} OH \xrightarrow{O} OH \xrightarrow{NHR} OH \xrightarrow{SCHEME 1} OH \xrightarrow{SCHEME 1$$

Table 1. Butylamination of 1,4-dihydroxyanthraquinone under various conditions

Run ^{a)}	Metal salt	Temp.(°C)	Time(hr)	Recovered 1(%)	Yield <u>2</u> (%)	Yield <u>3</u> (%)
1	CuCl ₂ .2H ₂ O	34	24	0	100	0
2 ^{b)}	11	34	24	0	100	0
3 ^{b,c)}	11	34	24	63.7	22.7	0
4 ^{b,d)}	CuCl	34	24	0	100	0
5	CoCl ₂	34	24	70.5	24.0	0
6	"	34	120	64.4	29.2	0
7	II .	70	24	0	70.9	0
8	NiCl ₂ .6H ₂ O	30	120	81.2	3,1	0
9	none	80	24	0	0	50.4 ^e)
10	Cu	80	24	0	0	37.3 ^{e)}

- a) Reactant $\underline{1}$ (5 mmol) was stirred in butyl alcohol (7.5 ml) with butylamine (228 mmol, 46 times to 1) and metal salt (10 mmol).
- b) Pyridine (25 ml) was used as solvent instead of butyl alcohol.
- c) Butylamine (55.8 mmol, 11 times to 1) was used.
- d) Deposition of metal copper was observed after the reaction.
- e) Dealkylation of 3 was well known under these conditions and the yield was depressed.

It was found that the reaction was proceeded smoothly at ambient temperature and $\underline{2}$ was obtained in a good yield. Cuprous and cupric chloride were the most effective salts and $\underline{2}$ was obtained quantitatively under the mild reaction conditions. Cobalt dichloride was moderately good but nickel dichloride has poor activity. This new synthetic method [B] is superior to usual Ullmann amination method [A] in the following points;

- a) Halogenation does not necessary and one stage of process can be omitted.
- b) The reaction proceed smoothly under the mild conditions comparing those of [A].
- c) The yield is quantitative.

Without metal salts [C], usual nucleophilic butylamination at α -position was proceeded exclusively and 1,4-bisbutylaminoanthraquinone 3 was obtained in 50% yield (Run 9). Metal copper which can not form the metal complex with 1 also not effective at all on this amination (Run 10).

The formation of copper complex between quinone carbonyl group and α -hydroxyl group of $\underline{1}$ may play a great role on this amination as supposed for the similar 4-butylamination of 1-aminoanthraquinone²⁾. The details of the mechanism are currently under investigation.

References

- 1. K.Yoshida, M.Matsuoka, T.Ueyama, Y.Yamashita, and T.Kitao, Chem. Lett., 1978, 765.
- 2. K.Yoshida, M.Matsuoka, Y.Yamashita, and T.Kitao, Chem. Lett., 1978,1317.
- 3. W.Bradley, E.Leete, J. Chem. Soc., 1951,2147.

(Received December 5, 1978)